Student Name: KEY

Instructor: Mundy-Castle

Exam Score: _____

1. Find the first derivative of each function.

a)
$$y = \operatorname{arcsec}(x^2 - 2)$$

$$\frac{dy}{dx} = \frac{2x}{|x^2-2| (x^2-2)^2-1} = \frac{2x}{|x^2-2| \sqrt{x^4-4x^2+3}}$$

b)
$$y = x(4^{-3x})$$

$$\frac{dy}{dx} = 4^{-3x} + x(4^{-3x})(\ln 4)(-3)$$

$$= 4^{-3x} - 3x \ln 4(4^{-3x})$$

c)
$$y = \ln(\cosh x)$$

2. Find the indicated integral.

a)
$$\int \frac{dx}{3+25x^2}$$
 $a=\sqrt{3}$, $u=5\times$, $du=5dx$, $\frac{1}{5}du=dx$

$$\frac{1}{5}\int \frac{du}{3+u^2} = \frac{1}{5}\left(\frac{1}{\sqrt{3}}\right)\arctan\frac{u}{\sqrt{3}} + C = \frac{1}{5\sqrt{3}}\arctan\left(\frac{5x}{\sqrt{3}}\right) + C$$

b)
$$\int \sinh 6x dx$$
 $u = 6x$, $du = 6dx \rightarrow \frac{1}{6} du = dx$

c)
$$\int \sin^2 x \cos x dx$$
 $\mathcal{U} = S_{i}'$

$$\int u^2 du = \frac{1}{3}u^3 + C = \frac{1}{3}\sin^3 x + C$$

All work must be shown to be awarded full credit. Provide exact solutions to all problems, unless otherwise stated.

A scientific calculator is allowed.

3. Use logarithmic differentiation to find
$$\frac{dy}{dx}$$
 for $y = \frac{x(x-1)^{3/2}}{\sqrt{x+1}}$, $x > 1$.

$$lny = ln \left[\frac{x(x-1)^{3/2}}{(x+1)^{3/2}} \right]$$

$$\ln y = \ln x + \frac{3}{2}\ln(x-1) - \frac{1}{2}\ln(x+1)$$

$$\frac{y'}{y} = \frac{1}{x} + \frac{3}{2} \left(\frac{1}{x-1} \right) - \frac{1}{2} \left(\frac{1}{x+1} \right)$$

$$y' = \frac{x(x-1)^{3/2}}{\sqrt{x+1}} \left[\frac{1}{x} + \frac{3}{2x-2} - \frac{1}{2x+2} \right]$$

4. Find the area under the curve $y = x\sqrt[3]{x+1}$, bounded by y = 0, x = 0, and x = 7.

$$\int_{0}^{7} \times (x+1)^{\frac{1}{3}} dx \qquad u = x+1, \quad du = dx$$

$$\times = u-1$$

$$\int_{1}^{8} (u-1) u^{\frac{1}{3}} du = \int_{1}^{8} u^{\frac{4}{3}} - u^{\frac{1}{3}} du$$

$$= \frac{3}{3} u^{\frac{7}{3}} \frac{3}{3} u^{\frac{4}{3}} \int_{1}^{8} u^{\frac{1}{3}} du$$

$$= \frac{3}{7}u^{\frac{3}{3}} - \frac{3}{4}u^{\frac{4}{3}}\bigg|_{1}^{8}$$

$$= \frac{3}{7}(8)^{\frac{7}{3}} - \frac{3}{4}(8)^{\frac{1}{3}} - \left(\frac{3}{7}(1)^{\frac{7}{3}} - \frac{3}{4}(1)^{\frac{7}{3}}\right)$$

$$= \frac{3}{7}(128) - \frac{3}{4}(16) - \frac{3}{7} + \frac{3}{4}$$

$$=\frac{1209}{28}$$
 ($\simeq 43.179$)